Package: RaceID 0.3.8
RaceID: Identification of Cell Types, Inference of Lineage Trees, and Prediction of Noise Dynamics from Single-Cell RNA-Seq Data
Application of 'RaceID' allows inference of cell types and prediction of lineage trees by the 'StemID2' algorithm (Herman, J.S., Sagar, Grun D. (2018) <doi:10.1038/nmeth.4662>). 'VarID2' is part of this package and allows quantification of biological gene expression noise at single-cell resolution (Rosales-Alvarez, R.E., Rettkowski, J., Herman, J.S., Dumbovic, G., Cabezas-Wallscheid, N., Grun, D. (2023) <doi:10.1186/s13059-023-02974-1>).
Authors:
RaceID_0.3.8.tar.gz
RaceID_0.3.8.zip(r-4.5)RaceID_0.3.8.zip(r-4.4)RaceID_0.3.8.zip(r-4.3)
RaceID_0.3.8.tgz(r-4.4-x86_64)RaceID_0.3.8.tgz(r-4.4-arm64)RaceID_0.3.8.tgz(r-4.3-x86_64)RaceID_0.3.8.tgz(r-4.3-arm64)
RaceID_0.3.8.tar.gz(r-4.5-noble)RaceID_0.3.8.tar.gz(r-4.4-noble)
RaceID_0.3.8.tgz(r-4.4-emscripten)RaceID_0.3.8.tgz(r-4.3-emscripten)
RaceID.pdf |RaceID.html✨
RaceID/json (API)
# Install 'RaceID' in R: |
install.packages('RaceID', repos = c('https://dgrun.r-universe.dev', 'https://cloud.r-project.org')) |
- cc_genes - Cell cycle markers for Mus Muscuus
- intestinalData - Single-cell transcriptome data of intestinal epithelial cells
- intestinalDataSmall - Single-cell transcriptome data of intestinal epithelial cells
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 17 days agofrom:00d8405f48. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win-x86_64 | OK | Nov 06 2024 |
R-4.5-linux-x86_64 | OK | Nov 06 2024 |
R-4.4-win-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-x86_64 | OK | Nov 06 2024 |
R-4.4-mac-aarch64 | OK | Nov 06 2024 |
R-4.3-win-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-x86_64 | OK | Nov 06 2024 |
R-4.3-mac-aarch64 | OK | Nov 06 2024 |
Exports:barplotgenebaseLineVarbranchcellscalcAlphaGcalcVarcalcVarFitCCcorrectcellsfromtreecleanNNclustdiffgenesclustexpclustheatmapcompdistcompentropycompfrcompMeancompmedoidscompNoisecomppvaluecompscorecompTBNoisecomptsnecompumapcorrVarcreateKnnMatrixdiffexpnbdiffgenesdiffNoisyGenesdiffNoisyGenesTBextractCountsfilterdatafindoutliersfitBackVarfitGammaRtfitLogVarLogMeanfitNBtbfitNBtbClfractDotPlotgetExpDatagetfdatagetFilteredCountsgetNodegetprojgraphClusterimputeexpinspectKNNlineagegraphLtreemaxNoisyGenesmaxNoisyGenesTBnoiseBaseFitplotBplotbackgroundplotBackVarplotdiffgenesplotdiffgenesnbplotDiffNoiseplotdimsatplotdistanceratioplotexpmapplotExpNoiseplotfeatmapplotgraphplotjaccardplotlabelsmapplotlinkpvplotlinkscoreplotmapplotmarkergenesplotMVplotNoiseModelplotoutlierprobsplotPCplotPearsonResplotPPplotPTplotQQplotQuantMapplotRegNBplotsaturationplotsensitivityplotsilhouetteplotspantreeplotsymbolsmapplotTrProbsplotUMINoisepostfntbpriorfnprojbackprojcellsprojenrichmentpruneKnnpseudoTimequantKnnrfcorrectSCseqSeurat2SCseqtestPriortransitionProbsupdateSCvarRegressionviolinMarkerPlot
Dependencies:askpassclasscliclustercolorspacecoopcowplotcpp11DEoptimRdiptestdplyrfansifarverFateIDflexmixFNNfpcgenericsggplot2gluegtableharmonyhereicaigraphirlbaisobandjsonlitekernlablabelinglatticeleidenlifecyclelocfitmagrittrMASSMatrixmatrixStatsmclustmgcvmodeltoolsmunsellnlmennetopensslpermutepheatmappillarpkgconfigpngprabclusprincurvequadprogR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppProgressRcppTOMLreticulateRhpcBLASctlrlangrobustbaserprojrootRSpectraRtsnerunnerscalessomsystibbletidyselectumaputf8vctrsveganviridisLitewithr